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'the Application of Implicit Runge-Kutta and Collocation 
Methods to Boundary-Value Problems* 

By Richard Weiss 

Abstract. The solution of a nonlinear system of first order differential equations with 
nonlinear boundary conditions by implicit Runge-Kutta methods based on interpolatory 
quadrature formulae is examined. An equivalence between implicit Runge-Kutta and 
collocation schemes is established. It is shown that the difference equations obtained have a 
unique solution in a neighbourhood of an isolated solution of the continuous problem, that 
this solution can be computed by Newton iteration and that it converges to the isolated 
solution. The order of convergence is equal to the degree of precision of the related quadra- 
ture formula plus one. The efficient implementation of the methods is discussed and 
numerical examples are given. 

1. Introduction. We investigate the application of certain implicit Runge- 
Kutta methods (cf. Butcher [2]) to the numerical solution of nonlinear boundary- 
value problems of the form 

(1.la) y'(t) - f(t, y(t))= 0, a ? t < b, 

(1.lb) g(y(a), y(b))= 0. 

Here, y, f and g are vector valued functions of dimension N. It is clear that most 
two point boundary-value problems can be reduced to (l.la, b). 

The schemes will be used to obtain approximations to y(t) on grids ir,; 

7r, = to I tj,** tI a =to < tj < ***< to = b; 
(1.2) 

ti =ti1+hi,1,h= max hi < Xmin hi}, 
i i 

where X, the ratio between the largest and the smallest grid spacing, is uniformly 
bounded for all families of grids to be considered. High order accuracy on the grid 
7r, will be obtained by introducing appropriately spaced intermediate points on each 
interval of r1j. Using interpolatory quadrature based on these intermediate points 
yields implicit Runge-Kutta methods. Identical schemes are obtained if the inter- 
mediate points are used for collocation with piecewise polynomials. 

We shall now introduce the Runge-Kutta schemes. Collocation will be discussed 
in Section 2. 
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Let 

(1.3) 0 < u1 < u2 < < u< = 1 

be a fixed set of points and define 

(1.4) W(t) = (t - Ul)(t U2) ... (t -U) 

(1 .5) Lk(t) = -(t)l((t Uk) W'(Uk)), k = 1, , 

rUi 
(1.6) Wik = f Lk(s) ds, k = 1, , n; ] = 1, , n. 

This leads to the set of quadrature rules 

rUi n 

(1.7) J P(s) ds ~ E WikqP(Uk), i = 1 * n. 
Ok=1 

Now introduce a subgrid of (1.2), viz. 

(1.8) tij = ti + uihi, j = 1, .., n; i = 0,. , I - 1, 

and, for ti i (ti, ti+ ], rewrite (I.la) as 
pu;hi 

(1.9) y(ti) - y(t) - f f(ti + s, y(t, + s)) ds = 0. 

The use of (1.7) to approximate the integral term in (1.9) then leads to the numerical 
method 

n 

(.lOa) hiNhYij -Yi - Yi-ln hi Wjkf(tik, Yik) = 09 

i = r, . , n; i = 0. , I- 1, 

(1.lOb) g(Y_1,n, YI-1,n) = 0, 

where 

r =1 if ul > 0, 

= 2 if u1 = 0, 

Yij represents an approximation to y(tij) and Y1 ,n is an approximation to y(a). 
If ul = 0, then Yi = Yi-,n, i = 1, * * *, I - 1. Equations (I.lOa, b) represent the 
desired finite difference scheme for (1.1). We have (n + 1 - r)I + 1 relations for the 
(n + 1 - r)I + 1 unknowns Y1 ,n, Yij. Only the approximations to y(ti), Yi = 

Yiln j = 0 . , *, I, are of interest. The values Yij, j = r, * , n - 1, are auxiliary 

quantities. 
We also consider the case when un in (1.3) is < 1. Then (1.10) has to be replaced by 

n 

Yi Yi -hi E Wikf(tikg Yik) = 0, j = r, * * n 
k=l 

(l.llIa) 9, i 0, ... I-1 
n I 

Yi+ - Y- - Wkh(tkik, Yik) = 0 J 

k=1 

(1.llb) g(Yo, YI)= 0, 
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where 

Wk = j Lk(S) ds, k = 1, ** *, n. 

If ul = 0, then Y 1 = Yi,i= ,** *, I-1. Equation (I.11) yields I(n + 2- r) + 1 
relations for the I(n + 2- r) + 1 unknowns Yi, Y j, j = r, n; i = 0, ** , I-1, 
and YI. 

The purpose of this paper is to investigate the convergence properties and com- 
putational aspects of (1.10) and (1.11). In Section 2, we shall present the alternative 
derivation of the schemes using collocation. The stability of the methods for linear 
equations (1.1) will be established in Section 3. The results of Section 3 will be used 
in Section 4 for the treatment of the nonlinear case where it will be shown that, for 
sufficiently small h, (1.10) (or (1.11)) has a unique solution in a neighbourhood of 
an isolated solution of (1.1), that this solution can be computed by Newton iteration 
and that the finite difference approximations converge to the isolated solution. 
The order of convergence is at least n. The results of Sections 3 and 4 are derived 
using the theory of Keller ([7], [8]). In Section 5, we refine the error estimates and 
show that the order of convergence is, in fact, equal to p + 1, where p is the degree of 
precision of the quadrature formula 

11 fl p1 

J p(s) ds >E P(Uk) J Lk(s) ds. 
? ~~~k=1 

This implies that convergence of order up to 2n can be obtained for suitably chosen 
points (1.3). We conclude this section by showing that the use of Lobatto points is 
computationally most efficient. Convergence results similar to those derived in 
Section 5 have been established by Axelsson [1] for the initial value problem for 
ordinary differential equations, by de Hoog and Weiss [5] for Volterra integral 
equations of the second kind and by de Hoog [4] for certain integro-differential 
equations. Finally, in Section 6, efficient ways of solving the linear systems arising 
in the implementation of Newton's method are discussed and numerical examples 
are given. 

Although we only treat two point boundary-value problems, the schemes and 
the analyses can be extended to multipoint boundary conditions as considered in 
Keller [8, Appendix B]. Also, for linear equations, we can include the case of piece- 
wise continuous coefficients and data if we proceed as in Keller [7]. 

2. Collocation. The alternative derivation of our schemes via collocation 
proceeds as follows: Let L(wr,) be the family of N-dimensional vector valued functions 
v(t) E C[a, b] such that v satisfies (1. lb) and each component of v is a polynomial of 
degree n on [ti, ti+1], i = 0, , I - 1. We now collocate at t = ti4, i.e., we require 
that v(t) satisfies (1.la) for t tj, j = 1, * * *, n; i = 0, ,I- 1. If ul = 0, then 
v'(t,,) is to be taken as the right derivative, and similarly, if un = 1, then V'(4G) is the 
left derivative. 

It is convenient to represent v as 
n 

(2.1) VWt = AMt) =E Csk(t - tj)ks ti <_ t <_ ti+,; i=0, 
k =O 
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Then the above conditions become 

(2.2a) M'tij) -f(tij, pi(tij)) = O. j I ... * n; i 0= ... * ,I 1, 

(2.2b) p(t) -Pi(ti) = i = 1, , I- 1, 

(2.2c) g(po(a), p-1(b)) = 0. 

This is a set of (n + 1)I relations for the (n + 1)I unknowns ci, k = 0.* n; 
i = O,. * * , I-1. 

We shall now establish an equivalence between the schemes (2.2) and (1.10). 
THEOREM 2.1. Let pi(t), i = 0, * * *, I - 1, satisfy (2.1), (2.2) and define 

p-,, n= po(a), Pij = Pi(tii), i = 1, .. , n; i = 0 . , I - 1. 

Then p-j, pi satisfy (1.10). Conversely, let Y1,,n Yi be a solution of (1.10) and 
denote by pi(t) the unique polynomial of degree n satisfying 

pA(tO) = Yi, pi(tii) = Yi j j = 19 ,.. n, 
if u, > 0, or 

MO(ti) = Yi, p'(ti) = t(ti, Yi), pi(tii) = Yi, j = 2, . . , n, 
if ul = 0. Then pi(t), i = 0,. , I - 1, satisfy (2.2). 

Proof. Since the { wjk are weights for interpolatory quadrature of degree n 
we have that 

n ti 

h i E wikP(tik) = P(s) ds 
k=l ti 

for all P(t) which are polynomials of degree < n - 1 on [ti, ti+ ]. From (2.1), 
ptii n 

Pi(tij) - P(t) = P$(s) ds = hi E WikPi(tik) 
ti ~~~~k=l 

n 

= hi E Wikf(tik, Pi(tik)), 
k=1 

provided (2.2a) is satisfied. Thus, from (2.2b), the pij satisfy (1.10). 
To establish the converse, note that 

pi(tii) - pi(ti) = Yi - Yi = hi > wjkpX(tik). 
k=l 

It follows from (1.10) that 
n n 

(2.3) hi E WikPs(tik) = hi E Wjkf(tik, Pi(tik)). 
k=1 k=1 

Since the matrix W = (Wi, j j= r, * , n; k = r, * , n, is nonsingular, it follows 
that 

pf'(tii) = fAtiiq Pi(tii)), j = 1, ... n. O 
In the same way, we obtain for the case un < 1: 
THEOREM 2.2. Let pi(t), i = 0,. , I - 1 satisfy (2.1), (2.2) and define 

Pi = Pi(ti), "pij = pi(ti ), i = n; i = 0,. * I - 1; PI = PI-l(tI); 
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then pi, pi i satisfy (1.11). Conversely, let Ys, Y, i be a solution of (1.11) and let pi(t), 
i=0, * *, I - 1, be defined as in Theorem 2.1. Then pi(t) satisfy (2.2). 

The equivalence of implicit Runge-Kutta and collocation schemes has been 
observed for initial-value problems by Wright [12] and Hulme [6]. 

Collocation by piecewise polynomials as a tool for solving boundary-value 
problems has been studied extensively. (For a bibliography, see Russel and Shampine 
[10].) For ul = 0 and un = 1, our collocation procedure coincides with that of Russel 
and Shampine [10]. For the remaining cases, our procedure is different since then 
v(t) defined by (2.2) is not an element of C([a, b] in general but only of C[a, b]. We 
have shown that for first order systems each such collocation scheme is identical 
with an appropriate difference scheme. 

The theory of Russel and Shampine [10] has recently been extended by deBoor 
and Swartz [3]. For the case of a scalar equation (1. la) with linear boundary conditions 
(1.ib), their results coincide with ours. 

Osborne [9] has considered a class of collocation procedures for linear scalar 
differential equations which include the methods presented here and selected schemes 
which have a minimal local discretization error. His theory is closely related to the 
results of Section 5. 

3. Stability for Linear Equations. In the remainder of the paper the analysis 
will be presented only for the case u1 > 0, un = 1. However, with slight notational 
modifications, all results extend to the remaining cases. 

We now investigate the stability of (1.10) for linear equations (1.1): 

(3.1a) y'(t) - A(t)y(t) - a(t) = 0, a _ t < b, 

(3.1b) Bay(a) + Bby(b) - = 0. 

THEOREM 3.1. Let A(t) E C[a, b] and Ba, Bb be such that (3. 1) has a unique solution 
for all a(t) E C[a, b] and all A. Then there exist constants ho, C1 and C2 such that the 
difference equations 

n 

(3.2a) vii - Vi-ln- hi A, WikA(tik)Vik = hiyij, 

j= 1, *. ,n; = O.. , I - 1, 

(3.2b) BaV ln+ BbvI-l,n = 6s 

have a unique solution for h < ho and 

(3.3) max{ Iv lnII, max max ivijii} =< C,( max max i1,yiii) + C2 11511.** 
O;5i_,I-1 1< j_-n O<i--I-1 1<i j;n 

Proof. Introduce the block vectors 
T (VT T 

Vi = (il, V in) 

(3.4) Di = (Vi-ln , Vi1,n) E = 0, * I - 1, 

T= () . ., . 
T. lyi (Til ' sYin) 

* * Unless otherwise specified, . will denote the maximum norm in RN or the induced operator 
norm. 



454 RICHARD WEISS 

and the appropriate block unit matrix land block matrices HI, i = 0, * , I - 1, 
so that (3.2a) can be written as 

(3.5) (J - hj)vi = Di + him, i = 0, ., I- 1. 

Since A(t) ? C[a, b], there exists a constant C3 such that 

max Illill _ C3, 
0 i gI-1 

where Ioll is the operator norm induced by the maximum norm on RnN. Hence, 
if h ? hi < 1/C3, it follows from Banach's lemma that 

(3.6) Vi = (J + hi~i + hiki)(vi + hizi), i = 0, .* , I- 1, 

where 

max IJ IRI < C49 C4 = const. 
OsisI-1 

The last N equations of (3.6) take the form 
n 

Vin = Vi-ln + hi E WnkA(tik)vi.l,n + h2Rivi-1n 
(37) k=1 

+ hizin + h2 Sizi, i = 0O.. *e I -1 

where the linear operators Ri, Si are uniformly bounded in i and h. Since, due to 
consistency, Ek=1 Wnk = 1, Eq. (3.7) can be written as 

(3.8) hiLhVin =Vin - - hiA(ti + hj/2)vj.1jn - hi[Qi + hiRi]vi-1n 
= hizin + h2 iy iz i = 0O. .e I- 1, 

where IjQjjj _ C50(h/2), C5 = const and @(h) is the modulus of continuity of A(t). 
Equation (3.8) combined with (3.2b) are (I + 1) equations for the (I + 1) unknowns 

in, i = -1, .. , I - -1. Multiplying the ith equation of(3.8) by (J - hiA(ti + hi/2)/2), 
where J is the (N, N) unit matrix, leads to a new difference operator 

(3.9) Lh = Eh + Lh 

where Lh is the difference operator obtained by applying the centered Euler scheme 
to (3.1a), viz. 

hiLhvin -Vin -' hiA(ti + hi/2)(vin + Vi-1,n) 

and Lh is a linear perturbation satisfying 

(3.10) IILhII ?< C60(h/2), C6 = const. 

Keller [7] has established stability for the centered Euler scheme. Thus, from (3.9) 
and (3.10), the application of the Banach lemma in the standard way guarantees 
stability for (3.8), (3.2b), viz. there exist constants h2, C7, C8 such that (3.8), (3.2b) 
is uniquely solvable for 0 < h < h2 and 

(3.11) max IVlinj I < C7 max max I yiv |I I+ C811H|61 
-1Cie-al (.)ain5-1 1:5l (n 

Clearly, (3.1 1) and (3.6) imply (3.3). 0 
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4. Solution of the Nonlinear Difference Equations and Convergence. A 
solution of (1.1) will be called isolated if the linear system 

(4.1a) w'(t) - A(t)w(t)= O0 

(4.1b) Baw(a) + Bbw(b) = 0 

where 

A(t) = fv(t, y(t)), Ba = gy(a)(y(a), y(b)), Bb = gy(b)(y(a), y(b)) 

has only the trivial solution. 
In the sequel, we shall use the notation 

(4.2) S,[y(t)] {z I z C RN, lI z - y(t)II ?< p} C RN 

and 

(4.3) S{Y(tii)} -{Iv-.,n; vi,,, = 1, . . *, n, i = 0 , I- 1 

jv-1,nC Sp[y(a)], vi C Sp[y(ti )]1} 
The main result of this section is summarized in 

THEOREM 4.1. Let (1.1) have an isolated solution y(t) E Cn '[a, b] and let 
f(t, z) E Co 1I {[a, b] X Sp[y(t)]}, g(v, w) C C2{ S P[y(a)] X S p[y(b)] } for some p > 0. 
Then there exist constants po and ho such that, Jbr 0 < h < how 

(i) Eqs. (1.10) have a unique solution { Yii C E S,. {y(tj ,)}, 
(ii) the solution can be computed by Newton's method which converges quad- 

raticallyfor any initial iterate { Yi (0) } C Sp, {y(tij) } provided Pi and pi/h are sufficiently 
small, 

(iii) jY-,,, - y(a)jj < Dih , |jY, - y(t..)jj < Dih j = 1, .. , n; i = 0, 
, I- 1,D1 = const. 

Proof. This theorem is the analogue of a result proved by Keller for the centered 
Euler scheme [8, Main Theorem]. The techniques employed in [8] are not restricted 
to this scheme but are a general tool for the study of finite difference methods for 
nonlinear boundary-value problems. 

We shall therefore not present a detailed proof of Theorem 4.1, but shall proceed 
only until the connection with the theory of [8] becomes obvious. 

Consider the linear system (3.2) with A(t), Ba and Bb given by (4.1). Introduce the 
(nN, N) matrices 

A 

where Ji = J/hi, the (nN, nN) matrices 

C.= [O Ci ] Di = hi1J - i I = 0,. , I- 1, 

where J, Ai are given by (3.5) and the (N + nNl)-dimensional vectors 

VT = (VT- v ** 1) rT = (W a ,YT , . 
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with vi, yj defined by (3.4). Then, by (3.5), the system (3.2) can be written as 

(4.4) ?v = r 

with the (N + nNI, N + nNI) matrix 

B.a QBb 

- co D 0 

?e= -C1 1 0 . 

From Theorem 3.1, ? is nonsingular for h < ho and 

(4.5) 1-1I I < max{C1, C2} = CO. 

Here LII is the operator norm induced by the maximum norm on R(N+nNI) 

Now consider (1.10) and write it in vector form 

(4.6) 4(Y)= 0, 

where 
yT=(T T T T T 

YT= Y 1.ns Yol01 Yons YI-1,1, .. YI-1,n) 

and 

g( Y-1,n YI-1,n) 

Nh Y01 

Nh Yon 

(4.7) bD Y) 

Nh Y1-1,1 

Nh Y- 1,n 

With (4.4) and (4.6), we have reduced Eqs. (3.2) and (1.10) to the form used in 
[8] for the treatment of the centered Euler scheme. Due to (4.5), we may proceed 
as in [8, Section 3] and parts (i) and (ii) of the theorem follow by slightly changing 
some of the details of the analysis of the centered Euler scheme. 

To establish (iii), note that from the Taylor series expansion the local discretization 
error ri = - Nhy(tfj) satisfies 

(4.8) 1ITill < D2hn, j= 1, ,n; i = 0,. . ,I- 1, D2 = const. 

Part (iii) now follows from the arguments of [8, Section 4] with appropriate modifica- 
tions resulting from (4.8). El 



IMPLICIT RUNGE-KUTTA AND COLLOCATION METHODS 457 

5. High Order Convergence. In this section, estimates for et = Yj - y(tt), 
i 0, * , I, will be derived which are sharper than the bounds provided by Theorem 

4.1. 
We shall say that w(t) G w0 if fol w(s)ds # 0 and that w(t) &E (P, v > 0, if 

fsrw(s) ds = 0, r = 0, ,'V - 1, 

f sv(s) ds 5 0. 

Clearly, n + v- 1 is the degree of precision of the quadrature formula 
1l n 

|p(s) ds E WnkW(Uk) 
k=1 

ifcot)C (Pu. 

The following lemma which provides an estimate of the local discretization 
error of (1.10) will be required further on. 

LEMMA 5.1. Let w(t) C (P v and consider the initial-value problem 

(5.1) x'(t) - '(t, x(t)) = 0, 0 < t ? h, x(O) = xo, 

where A C nv+ 1 {[0, h] X RN} and A, is uniformly Lipschitz continuous with respect 
to xfor 0 ? t ? h and x < coa Then the implicit Runge-Kutta scheme 

In 
Xi - xo - h A wikt(ukh, Xk) = 0, j = 1, * , n, 

k=1 

has a unique solution if h is sufficiently small and I jX, - x(h)JI < D3h+v+l , D3 = 

const. 
This lemma is a generalization of a result given in Axelsson [1, Section 3] and 

can be proved by the technique used there. Alternatively, it may be established by 
the arguments used in de Hoog and Weiss [5] and Weiss [11] for the treatment of 
implicit Runge-Kutta methods for Volterra integral equations of the second kind 
(cf. [5, Theorem 4.1] or [11, Theorem 2.1]). 

We shall also require 
LEMMA 5.2. Let 

(5.2) uI- hF(u) + v, u, v E R, 

be a family of nonlinear equations depending on the real parameter h, with Fh satisfying 

(5.3) hEC[R m], JjFh (u)|| _ L>, 

v = 0. , 3, u E RM, 0 _ h _ h, Lv =const.*** 

Then, for 0 < h < h = min(h, 1/2L1), (5.2) has a unique inverse u = Uh(V) E C3[RM] 
which can be represented as 

(5.4) Uh(v) = v + hFh(v) + h2Rh(v) 

where 
** * Here 11 - is the maximum norm on RM or the induced operator norm. 
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(55) I IR'(v)II ? L4, I IR'(vI) - R(V2)I I< L51 |VI - V21 , 

VV1,V2 C RM, L4, L5 = const. 

Proof. The existence, uniqueness and differentiability of Uh follow from the 
contraction mapping principle and the implicit function theorem. 

Using v as a starting iterate for the functional iteration, we have 

(5.6) Uh(v) = v + hrh(v) 

where 
m 

rh(v) = lim Fh(v + hFh(v + (. 

Clearly, 

(5 *7) | ~ 'vI |rh(V) I 1,h(l | 6, V (E R , L6 =const. 

Equating (5.2) and (5.4) leads to 

Rh(v) = [F(Uh(V))U'(V) - Fh(v)]/h. 

From (5.2), 

uh(v) = h Fh(uh(v))u'(v) + J, 

where J is the (M, M) unit matrix. Hence, 

U'(v) = (J - h Fh(uh(v)))Y, 

and, using (5.6), 

(5.8) Rh(v) = [F'(Uh(V)) - Fh(v) + h(Fh(v))) E (hFh(Uh(V)))m]jh 

(5.8) m=O 

= f Fh'(v + shrh(v)) ds rh(V) + Fh(uh()) 1j (h Fh(u(v))) 

Using (5.8) together with (5.3), (5.6) and (5.7), it is now straightforward to establish 
(5.5). 0 

The main result of this section is 
THEOREM 5.1. Let w(t) E (SPIfor v < n and f(t, z) EC cn++l {[a, b] X Sp.[y(t)]}. 

Then 

Yi - y(ti)|I < D3h8+v i = 0, * * I, D3 = cost. 

Proof. Let the function ,u(t, z) C c+ v+l{[a, b] X RN} satisfy ,u(t, z) 1, (t, z) C 
[a, b] X Sp.y(t)] and ,u(t, z)- 0, (t, z) Er [a, b] X Sg, p > po. Denote 

f(t, z) = f(t, z),u(t, z). 

If f(t, y) in (1.1) is replaced by f(t, y), then (1.1) has not been changed in [a, b] X 

Spj[y(t)]. Also, the approximations Yi; defined by (1.10) and Theorem 4.1 satisfy 
n 

yti -Yi-l n -hi E wikf(tik, Yik) =0 (5.9a) k=1 
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(5.9b) g(Y_,, YI-ln) = 0. 

The function f(t, z) has compact support. Hence, from Lemma 5.2, there exists 
a constant h3 such that, for 0 < h _ h3, (5.9a) can be written as 

n 
0 Yi- Yi-l,n - hi E Wikf(tik, Yi-l,n) h2Ga(Yi-l,n) = 0, 

(5.10) k-= 

In particular, for j = n, 
n 

-Yi+- Y- hi E Wnkf(tik, Yi) htGhn(Yi) = 0, (5.11) k-i 

From Lemma 5.1, 
n 

y(ti+1) - y(ti) - hi WnkJ(tik, y(ti)) -hGn (y(ti)) =ri 

E~ ~~~~~~~ = O.***,I1 
(5.12) k-1 

where 

llTiIl < D4h n~, i = O *., I - 1, D4 = const. 

Subtracting (5.12) from (5.11), applying Taylor's theorem and using Theorem 4. 1(iii) 
and Lemma 5.2, we obtain 

n 
hiL*e i -e +- ei - hi E wnkA(tik)ei - h Qe = ai, 

(5.13) h L. * e k-* 

where A(t) is defined by (4.1), Qi is a linear operator with 

(5.14) ItI'D5 i=O.*,-1, D5 = const 

and 

|laiII < Deh n+v+l, i=O *0, l-1 D6 const. 

Also, (1.Ib), (5.9b) and the application of Taylor's theorem yield 

Baeo + BbeI = 7 

where Ba, Bb are given by (4. lb) and 11711 < D7h2n, D1 = const. It follows from (5.14) 
by an argument similar to that used in the proof of Theorem 3.1 that the difference 
equations 

L*ej = ati, i = O.*-,I-1 

Baeo + BbeI = 6 

are stable. This completes the proof. C 
COROLLARY 5.1. If v > 0 and f(t, z) is as in Theorem 5.1, then 

Yi - y(t,,j)H _ D8h I~, j = 1, * * *, n- 1; i = 0, * * * , I - 1, D8 = const. 
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Proof. Subtracting (1.9) from (5.9a), applying Taylor's theorem and using 
Theorem 4.1, we obtain 

n 

(5.15) ~e, - hi E wilkA(t.k, y(tik))eik = ei + K ji 

j= 1,*** n;i O.0, ,-1 

where e, i = Y i - y(ti i) and 

11KiiII < Dgh-+1 I = 1, .. , n; i = 0, , ID- 1 D9 = const. 

Writing (5.15) in matrix vector notation similar to (3.5) and repeating the arguments 
following (3.5), we obtain 

l lei ii < DIOl 11ei ll + max| |Ki i ||) 

j = 1, A, n; i = 0. * a, I - 1, D10 = const. E 

For fixed n, it is desirable to choose { u1, * , un so that the order of convergence 
is as high as possible. For the cases (ul = u. un = 1), (ul > 0, u,, = 1 or ul = 0, 
un < 1) and (ul > 0, un < 1) this leads to the Lobatto, Radau and Gauss points, 
respectively. The orders of convergence are 2n - 2, 2n - 1 and 2n. When using 
Lobatto points, we have to solve a system of order N(MI + 1) to obtain order 2A 
convergence. For Radau points, a system of order N(MI + 1) yields convergence 
of order 2, - 1 and for Gauss points, a system of the same size yields convergence 
of order 2M - 2. Hence, Lobatto points are more efficient than Radau points, which 
again are more efficient than Gauss points. 

The Lobatto points for n = 2, 3, 4, are given below: 

n = 2: u1 = 0, u2 = 1 (Trapezoidal rule), 

n = 3: u1 = 0, U2, = , U3 = 1 (Simpson's rule), 

n = 4: U1 = O, U2 = 2(1 -11/5),tt3 = 2(1 + l/V/),U4 = 1. 

6. Computational Aspects and Numerical Examples. In the case when (1.1) 
has separated endpoint boundary conditions, viz. 

(6.1) g(v, w) MOi(v) 1 

Lg2(w) 

where g1(v) is a p-vector and g2(w) is a q (N - p)-vector, it is advisable not to 
apply Newton's method to (4.7), but to rewrite (4.7) in the form 

g1( Y- ,n) 

Nh Y01 

b(1) = . . 

Nh Y1- I,. 

g2( Y1-1,0) 

Then the matrices av in the implementation of Newton's method 
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(6,2) GV[ yP+l - yV] = 41( yV) 

have a certain block-band structure. For I = 3, this structure is exhibited in the 
schematic representation 

(6.3) 

N 

Here N1 = N(n + 1 -r) if u, = 1 and N1 = N(n + 2 -r) otherwise. Only the 
white fields within the dark lines contain nonzero elements. 

Equation (6.2) can be solved by the following procedures: 
#1: Gaussian elimination with partial pivoting. If the elimination is performed 

with consideration of the zero-pattern in ai, then only the shaded fields in (6.3) are 
filled and the amount of additional storage required is modest. 

#2: A "mixed" pivoting strategy with column interchanges while eliminating 
Yt, i = 0,. *, I, and row interchanges during the elimination of the other unknowns. 
Here the zero-pattern of G" is preserved. This procedure is slightly simpler to im- 
plement than #1. 

The leading terms in the operational counts are 
#1: I{N4[N12/3 + N1(N + p)/2 + Np]}. 
#2: I{p[p2/3 + p(NI + q)/2 + Njq] 

+ (N1 - p)[(Nl _ p)2/3 + (N1 - p)(N + p)/2 + Np]}. 
A simple calculation shows that #2 is faster than #1. 
When the boundary conditions are not of the form (6.1), then the matrices av 

in Newton's method for (4.7) have the following structure for I = 3: 
N N 

(6.4) 

N1 
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Again, at' can be inverted efficiently by Gaussian elimination with partial pivoting. 
The amount of fill-in introduced is indicated by the shaded areas in (6.4). The leading 
term in the operational count is I{N,[N12/3 + 3N1N/2 + 2N2]}. 

The scheme (1.10) with n = 4, Lobatto points (accuracy h') and algorithm #2 
has been used to solve the following problems: 

(6.5)(i) u"(t) = exp(u(t)), u(0) = u(1) = 0. 

The unique solution is 

u(t) = 2 ln c sec( 2I2))} - in 2, 

where c 1.33605569490611. As a first order system, (6.5) takes the form 

Y1 -Y2 = 0, 

Y2- exp(y1) = 0, 

Y(O) = Y(i) = 0. 

A uniform grid was used. The starting values for the Newton iteration were obtained 
from 

(0) 0.)2 (0) - 

Yi = (t - 0. - 0.25, y = 2t- 1. 

The errors in u and u' for different gridspacings are shown in Table 1. Since u is 
symmetric about t = 1, the values are only given for t = 0 and t = 1. The iteration 
process was terminated when the norm of the difference between two successive 
iterates was < 1014. For all h in Table 1 this was achieved in four iterations. 

TABLE 1 
U U' 

h t= 14 t = 0 t 

1/3 2.66 E-9 -3.66 E-8 -9.06 E-9 
1/6 5.07 E-11 -5.96 E-10 -1.47 E-10 
1/12 8.30 E-13 -9.42 E-12 -2.32 E-12 

u"(t) + tu'(t) - u(t) = tet - jtJ(6 - 12t + 2t2 - 3t), 

(6.6)(ii) 
u(-1) = e1 -2, u(1) = e. 

The unique solution to (6.6) is 

u(t) =et _ (t3 t4) t _ 0, 

=et + (t3 t4) 0 < t. 

Equation (6.6) was transformed to a first order system in the same way as (6.5). 
We chose this example to demonstrate that, for linear equations, the results of Section 
5 are not affected by jump discontinuities in A(t) and g(t) or their derivatives, if the 
points of discontinuity are contained in ir,. We use uniform nets such that t = 0 
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is a gridpoint. The largest errors in u and u' occur at t = 0 and t = 1 respectively. 
The errors in u and u' are given in Tables 2 and 3. 

Russel and Shampine [10] used collocation in the smooth Hermite space H"3'(ir,) 
to solve (6.6). The maximum of the absolute values of the errors obtained by this 
procedure is given in the last columns of Tables 2 and 3. It must be noted, however, 
that the operational count for our method in this example is about twice that re- 
quired for the collocation procedure. So it is appropriate to compare our values for 
2h with those of Russel and Shampine for h. 

TABLE 2 
U 

h t - = 0 t H 3) 

1/2 -6.59 E-8 -9.81 E-8 -7.67 E-8 
1/4 -1.01 E-9 -1.50 E-9 -1.16 E-9 3.40 E-6 
1/8 -1.57 E-11 -2.32 E-11 -1.80 E-11 2.17 E-7 
1/16 -2.46 E-13 -3.62 E-13 -2.79 E-13 1.36 E-8 

TABLE 3 
U, 

h t= -1 t= -2 t= t=0= 2 t= 1 f(3) 

1/2 -2.88 E-7 -2.70 E-7 -1.80 E-7 3.24 E-9 3.13 E-7 
1/4 -4.45 E-9 -4.13 E-9 -2.67 E-9 2.76 E-10 5.34 E-9 1.00 E-5 
1/8 -6.93 E-li -6.42 E-il -4.12 E-1l 5. 26 E-12 8.54 E-li 6.18 E-7 
1/16 -1.04 E-12 -9.97 E-13 -6.67 E-13 8.97 E-14 1.34 E-12 3. 85 E-8 

All computations were done in double precision on the IBM 370/155 at the 
California Institute of Technology. 
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